Using On-Line Arithmetic and Reconfiguration for Neuroprocessor Implementations
نویسندگان
چکیده
Abs t rac t . Artificial neural networks can solve complex problems such as time Series prediction, handwritten pattern recognition or speech processing. Though software simulations are essential when one sets about to study a new algorithm, they cannot always fulfill real-time criteria required by some practical applications. Consequently, hardware implementations are of crucial import. The appearance of fast reconfigurable FPGA circuits brings about new paths for the design of neuroprocessors. A learning algorithm is divided into different steps that are associated with specific FPGA configurations. The training process then consists of alternating computing and reconfiguration stages. Such a method leads to an optimal use of hardware resources. This paradigm is applied to the design of a neuroprocessor implementing multilayer perceptrons with on-chip training and pruning. All arithmetic operations are carried out with on-line operators. We also describe the principles of the hardware architecture, focusing in particular on the pruning mechanisms.
منابع مشابه
An On-Line Arithmetic-Based Recon gurable Neuroprocessor
Arti cial neural networks can solve complex problems such as time series prediction, handwritten pattern recognition or speech processing. Though software simulations are essential when one sets about to study a new algorithm, they cannot always ful ll real-time criteria required by some practical applications. Consequently, hardware implementations are of crucial import. The appearance of fast...
متن کاملAn On-Line Arithmetic-Based Reconfigurable Neuroprocessor
Abs t r ac t . Artificial neural networks can solve complex problems such as time series prediction, handwritten pattern recognition or speech processing. Though software simulations are essential when one sets about to study a new algorithm, they cannot always fulfill real-time criteria required by some practical applications. Consequently, hardware implementations are of crucial import. The a...
متن کاملOptimal Reconfiguration of Distribution Network for Power Loss Reduction and Reliability Improvement Using Bat Algorithm
In power systems, reconfiguration is one of the simplest and most low-cost methods to reach many goals such as self-healing, reliability improvement, and power loss reduction, without including any additional components. Regarding the expansion of distribution networks, communications become more complicate and the number of parameters increases, which makes the reconfiguration problem infeasib...
متن کاملPartial Reconfigurable FIR Filtering System Using Distributed Arithmetic
Dynamic partial reconfiguration (DPR) allows us to adapt hardware resources to meet time-varying requirements in power, resources, or performance. In this paper, we present two new DPR systems that allow for efficient implementations of 1D FIR filters on modern FPGA devices. To minimize the required partial reconfiguration region (PRR), both implementations are based on distributed arithmetic. ...
متن کاملEconomic Evaluation of Optimal Capacitor Placement in Reconfiguration Distribution System Using Genetic Algorithm
Optimal capacitor placement, considering power system loss reduction, voltage profile improvement, line reactive power decrease and power factor correction, is of particular importance in power system planning and control. The distribution system operator calculates the optimal place, number and capacity of capacitors based on two major purposes: active power loss reduction and return on invest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999